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Abstract Theoretical and applied studies of fractional-

order PIkDl (FOPID) controller in many scientific and

engineering fields have shown many advantages compared

to the classical PID control. However, the adjustment of

FOPID controller becomes more complicated due to two

additional parameters. In this study, the FOPID controller

adjustment problem is transformed into a nonconvex

optimization problem, and then a new metaheuristic

method, named state transition algorithm (STA), is intro-

duced to select the optimal FOPID controller parameters.

In the meanwhile, the influence of objective criterion and

sample size on the performance of FOPID controller design

is analyzed. The dominance of the proposed method,

especially for tuning FOPID controller parameters, is

attested by several simulation cases and the comparisons of

STA with other stochastic global optimization algorithms

over the same problems.

Keywords Fractional-order control � PIkDl � State
transition algorithm � Objective criterion � Sample size

1 Introduction

Proportional-integral-derivative (PID) controller has

been applied to real-world industrial process control for

several decades. It is perhaps the most widely used

controller in practical applications. The designing sim-

plicity and performance superiority with low percentage

overshoot and short settling time in slow process plants

contribute to its popularity [1]. In recent years, several

research communities pay great attention to fractional-

order controller and system, which are on the basis of

fractional-order calculus [2, 3], due to the fact that

numerous practical control systems can be expressed by

fractional-order differential equations [4]. The most

important goal of the use of fractional calculus is the

application of the fractional-order controller (FOC) for

the enhancement of the performance of system control.

For instance, Podlubny [5] put forward the structure of

the FOPID controller and illustrated the availability of

such controller for actuating the response of fractional-

order system. In [6], the authors proposed a new con-

troller of fractional-order fuzzy proportional-integral-

derivative (PID), which can be used on the closed-loop

error reduction, and its fractional derivative and inte-

grator are regarded as the input and the output, respec-

tively. Koksal presented the application of a fractional-

order PIkDl controller to a nonlinear two-mass system

[7]. Wang and Gao [8] designed a PDl controller, and

Petras [9] came up with tuning, auto-tuning and self-

tuning methods for the FOPID. By using particle swarm

optimization (PSO), Ramezanian et al. [10] presented a

method to optimally tune the practical FOPID con-

troller’s parameters for an automatic voltage regulator

system.

Compared with conventional IOPID (integer-order

PID), FOPID has low sensitiveness to external distur-

bances, and it also possesses unique characteristics in

infinite dimensions. Furthermore, by applying FOPID to

the control system, it can obtain fine tracking accuracy,

abundant dynamics, high robustness and the like. There are

two typical fractional-order operations, i.e., I and D in a
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controller of FOPID, and thus, two additional parameters:

the integral and differential order, denoted by k and l,
respectively, should be taken into account, while the pro-

portional, derivative and integral gains Kp, Ki, Kd are set.

When k ¼ 1 and l ¼ 1, it will become IOPID.

For POPID, parameter optimization is required for the

specification compliance of the users in a certain process to

finda series ofoptimalKp,Ki,Kd,k andl values,whichmakes

the adjustment problem of FOPID controller more compli-

cated than classical PID control due to two additional argu-

ments. Up to present, multifarious parameter setting methods

have been proposed. In frequency domain, an evolutionary

optimization scheme (EOS) to optimally determine the

parameters of FOPID was proposed from loop-shaping per-

spective in [11]. For the FOPID controller design, an applied

case of differential evolution was described by Arijit, which

includes fractional-order integrator as well as fractional-order

differentiator [12]. In time domain, [13] showed that the

allowable parameters ofPIDcontroller can bedeterminedbya

small gain type, which is used previously in finite dimensional

plants. Lee and Chang [14] came up with an evolutionary

algorithm based on the electromagnetism-like algorithm,

which is named IEMGA, to solve the problem of PIkDl

controller parameters tuning. Padhee et al. [15] proposed a

novel tuning method for tuning k and l of FOPID using

genetic algorithms.

Recently, a novel stochastic method, i.e., the state

transition algorithm (STA), has emerged in global opti-

mization, where a solution to an optimization problem can

be treated as a state, and in the meanwhile, the update of

current solution using state transformation operators is

considered as a state transition [16–19]. Using the state

space representation, the state transition algorithm can

describe solutions updating in a unified framework, and the

execution operators to update solutions are expressed as

state transition matrices, which make it easy to understand

and flexible to implement. The strong global search ability

and adaptability of state transition algorithm have been

demonstrated by comparison with other global optimiza-

tion algorithms and several real-world applications. Zhou

et al. [20] applied the discrete state transition algorithm to

solve the optimal design problem arising in water distri-

bution networks. And in the meanwhile, Wang [21] used a

multiobjective state transition algorithm in the alumina

evaporation process to solve the problem of how to

maintain the balance of operating costs and energy effi-

ciency. In [22], in the case of small signals overlapping, a

continuous STA was used to resolve the overlapping linear

sweep voltammetric peaks to a very big one. Due to its

powerful potential for finding a global minimum, in this

study, we use STA to tune FOPID controller parameters via

optimization.

In the meanwhile, it is found that both the objective

criterion and the sample size have important impact on the

performance of FOPID controller design, which can be

easily neglected by most researchers. As a result, the

influence of objective criterion and sample size on the

performance of FOPID controller design is analyzed using

simulation studies in this paper.

In what follows, the novelty and the contribution of this

study are summarized: (i) A novel metaheuristic method

called continuous state transition algorithm (STA) is

introduced to solve the optimal design of PIkDl controller

problem. Comparisons with STA with other optimization

algorithms have testified that STA is a promising alterna-

tive method for FOPID controller parameters selection. (2)

Different objective criteria and sample sizes are studied on

the performance of FOPID controller design. (3) It is found

that the integral time absolute error (ITAE) has the

excellent tracking performance compared to other objec-

tive criteria.

The remainder of the study is organized as follows.

Section 2 introduces the basics of fractional calculus and

FOPID. Section 3 presents optimization problem formula-

tion involving FOPID controller design. The state transi-

tion algorithm is then introduced in Sect. 4. In Sect. 5,

some simulation results are given to illustrate the effec-

tiveness of the proposed approach. The main conclusions

of this paper are drawn in Sect. 6.

2 Fractional-order PID (FOPID) controller

FOPID controller is a generalization of conventional inte-

ger-order PID controller. Before the detailed form of

FOPID controller, some fundamentals of fractional calcu-

lus are briefly introduced.

2.1 Fractional calculus

Fractional calculus, denoted as t0Dj
t (where j represents

the fractional order, and t0 and t represent the lower and

upper limits of the operation, respectively), is a general-

ization of integration and differentiation to noninteger-

order operator, which can be expressed as

t0Dj
t ¼

dj

dtj
j[ 0;

1 j ¼ 0;
R t

t0
ðdtÞ�j j\0;

8
>><

>>:
ð1Þ

where j 2 R is generally assumed to be a real number.

There are several definitions to describe the fractional

calculus, of which Riemann–Liouville and Grunwald–

Letnikov definitions are most commonly used.
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1. Riemann–Liouville definition (RL)

t0Dj
t f ðtÞ ¼

1

Cðn� jÞ
dn

dtn

Z t

t0

f ðsÞ
ðt � sÞ1�ðn�jÞ ds

n� 1\j\n

ð2Þ

where Cð�Þ is the Euler’s gamma function defined by

CðzÞ ¼
Z 1

0

tz�1e�tdt; RðzÞ[ 0: ð3Þ

2. Grunwald–Letnikov definition (GL)

t0Dj
t f ðtÞ ¼ lim

h!0

1

hj

X½ðt�t0Þ=h�

i¼0

ð�1Þi
j

i

� �

f ðt � ihÞ; ð4Þ

where ð�1Þi j
i

� �

is the binomial coefficient of ð1� zÞj. A

numerical computation method for calculating the frac-

tional calculus can be described as follows

t0Dj
t f ðtÞ ¼

1

hj

X½ðt�t0Þ=h�

i¼0

w
ðjÞ
i f ðt � ihÞ; ð5Þ

here,

w
ðjÞ
0 ¼ 1; w

ðjÞ
i ¼ 1� jþ 1

i

� �

w
ðjÞ
i�1; i ¼ 1; 2; . . .:

ð6Þ

The Laplace transformation of fractional derivative and

integral of f(t) can be defined by

LfD�jf ðtÞg ¼ s�jFðsÞ;

LfDjf ðtÞg ¼ sjFðsÞ �
Xn�1

i¼0

sl½Dj�i�1f ðtÞ�t¼0;

n� 1\j\n:

ð7Þ

The RL definition is equivalent to the GL definition since

j
i

� �

¼ Cðjþ1Þ
i!Cðj�iþ1Þ, while the GL definition is more suit-

able for numerical calculation, and it is adopted in this

study.

2.2 The form of FOPID controller

The transfer function of PIkDl controller, which was pro-

posed by Podlubny [5] for the first time, has the form

GcðsÞ ¼
UðsÞ
EðsÞ ¼ Kp þ Kis

�k þ Kds
l ð8Þ

where Kp;Ki and Kd represent the proportional, integral

and differential gains, respectively; k and l are integral and

differential orders correspondingly.

When k ¼ 1; l ¼ 1, there will be a special case of PIkDl

controller:

GcðsÞ ¼ Kp þ
Ki

s
þ Kds

It is not difficult to find that the above controller is a

conventional integer-order PID controller. With the two

extra parameters to be adjusted, the fractional-order PID

controller is more flexible in controller design.

3 Optimization problem formulation

Figure 1 represents the block diagram with fractional-order

controller. It is not difficult to obtain the closed-loop

transfer function as follows

YðsÞ
YrðsÞ

¼ GcðsÞGpðsÞ
1þ GcðsÞGpðsÞ

ð9Þ

where the YrðsÞ and Y(s) represent the control input and

control output, respectively, GcðsÞ ¼ UðsÞ
EðsÞ ¼ Kp þ Kis

�k þ
Kds

l is controller of the system, and GpðsÞ is the transfer

function of controlled plant.

From (9), the steady-state error of the closed-loop sys-

tem is

EðsÞ ¼ YðsÞ � YrðsÞ

¼ GpðsÞGcðsÞ
1þ GpðsÞGcðsÞ

YrðsÞ � YrðsÞ
ð10Þ

where there are five unknowns, Kp, Ki, Kd and k, l. And
then the objective function is defined as follows:

min JnðKp;Ki;Kd; k; lÞ ð11Þ

where n ¼ 1; 2; 3; 4 represents the objective function under

four different criteria, respectively, which are given by:

J1 ¼
Z 1

0

½eðtÞ�2dt

J2 ¼
Z 1

0

t½eðtÞ�2dt

J3 ¼
Z 1

0

jeðtÞjdt

J4 ¼
Z 1

0

tjeðtÞjdt

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð12Þ

( )c p i dG s K K s K s−= + + ( )pG s∑
+

−
ry yue

Fig. 1 Block diagram representation of system with PIkDl controller
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where eðtÞ ¼ yrðtÞ � yðtÞ is the steady-state error; yrðtÞ and
y(t) are the reference input and the output signal, respec-

tively. Moreover, J1, J2, J3 and J4 represent the integral

squared error (ISE), integral time squared error (ITSE),

integral absolute error (IAE) and integral time absolute

error (ITAE) criteria, respectively. This paper will make a

comparative analysis of these four kinds of criteria.

The equations in (12) are discretized, and the results are

given by (13).

J1ðmÞ ¼
XM

m¼1

e2ðmÞ

J2ðmÞ ¼
XM

m¼1

me2ðmÞ

J3ðmÞ ¼
XM

m¼1

jeðmÞj

J4ðmÞ ¼
XM

m¼1

mjeðmÞj

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

ð13Þ

whereM represents the sample size. Since the integral range

of criterion is ½0;1� in continuous state,M should approach

1 ideally. And in this paper, the influence of sample size on

the system response performance will be discussed.

Optimization algorithm can be used to find the controller

parameters. Recently, state transition algorithm (STA) has

been emerging as a very powerful method for global

optimization (see [16–18]). Hence, we adopt STA to solve

the problem of PIkDl controller parameters tuning. In the

sequel, we will give a brief of state transition algorithm.

4 Continuous state transition algorithm

In recent few years, a novel stochastic global optimization

method, named state transition algorithm (STA), has been

proposed [16–19], which is inspired by the notions of state

transition and state space representation of control theory. In

such a STAmethod, a solution to an optimization problem can

be treated as a state; meanwhile, the update of current solution

using state transformation operators is treated as a state tran-

sition. Generally, in continuous state transition algorithm, the

unified formof generation of solution can be shown as follows:

xkþ1 ¼ Akxk þ Bkuk

ykþ1 ¼ f ðxkþ1Þ

�

; ð14Þ

where xk 2 Rn is a state, which corresponds to an opti-

mization problem’s solution; Ak and Bk are state transition

matrices which has suitable dimensions; uk is a function of

xk as well as historical states, and f is considered as the

evaluation function.

Four special operators of state transformation are

developed on the base of multifarious type references of

space transformation.

1. Rotation transformation (RT)

xkþ1 ¼ xk þ a
1

nkxkk2
Rrxk; ð15Þ

where a is defined as rotation factor and is a positive

constant; Rr 2 Rn�n is a random matrix of which

elements are within [-1, 1]; k � k2 is the vector’s

2-norm.

2. Translation transformation (TT)

xkþ1 ¼ xk þ bRt

xk � xk�1

kxk � xk�1k2
; ð16Þ

where b is defined as translation factor and is a positive

constant; Rt 2 R is a random variable of which ele-

ments are within [0, 1].

3. Expansion transformation (ET)

xkþ1 ¼ xk þ cRexk; ð17Þ

where c is defined as expansion factor and is a positive

constant; Re 2 Rn�n is a random diagonal matrix of

which elements obey the Gaussian distribution.

4. Axesion transformation (AT)

xkþ1 ¼ xk þ dRaxk ð18Þ

where d is defined as axesion factor and is a positive

constant; Ra 2 Rn�n is a random diagonal matrix of

which elements obey the Gaussian distribution, and

meanwhile, there is only one random position having

nonzero value.

Now we use the following pseudocode to sketch out the

process of the continuous STA.

Algorithm 1 Pseudocode of the continuous STA
Input:
maxiter: the maximum number of interations
SE: search enforcement
Best: the initial solution
Output:
Best∗: the optimal solution
1: repeat
2: if α < αmin then
3: α ← αmax
4: end if
5: Best ← expansion(funfcn,Best,SE,β,γ)
6: Best ← rotation(funfcn,Best,SE,α,β)
7: Best ← axesion(funfcn,Best,SE,β,δ)
8: α ← α

fc
9: until the specified termination criterion is met
10: Best∗ ← Best
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As for detailed explanations, Algorithm 2 illustrates the

process of expansion function in Algorithm 1.

Algorithm 2 Pseudocode of the expansion
transformation in Algorithm 1
Input:
oldBest: the best solution in the last transfomation
Output:
Best∗: the best solution
1: fBest ← feval(funfcn,oldBest)
2: State ← op−expand(Best,SE,γ)
3: [newBest,fGBest] ← fitness(funfcn,State)
4: fGBest ← feval(funfcn,newBest)
5: if fGBest < fBest then
6: fBest ← fGBest
7: Best ← newBest
8: State ← op−translate(oldBest,Best,SE,β)
9: [newBest,fGBest] ← fitness(funfcn,State)
10: if fGBest < fBest then
11: fBest ← fGBest
12: Best ← newBest
13: end if
14: end if

Where SE is search enforcement which represents the

times of transformation by a certain operator, and a new best

solution is adopted by using the ‘‘greedy criterion.’’ Besides,

there are four other important parameters, namely rotation

factor a, translation factor b, expansion factor c and axesion
factor d. And funfcn, Best and State represent the objective

function, the current best solution and the candidate solution

set, respectively. And the specified termination criterion is

the maximum number of iterations (Maxiter for short) in this

study. In addition, in the case when a better solution can be

found by other transformation operators except translation,

the translation operator needs to be implemented.

In the continuous state transition algorithm, the rotation

transformation can search in a hypersphere when a radius a
is given coming from its ability of having the function of

local search. The reduction of rotation factor a between a

maximum value amax and a minimum value amin obeys an

exponential way, of which the base fc is defined as less-

ening coefficient. The translation transformation is

designed for a line search. The expansion transformation is

developed for global search, of which the goal is searching

with probability in whole space, and the axesion transfor-

mation is proposed in the late stage to strengthen the sin-

gle-dimensional search as well as global search.

5 Simulation results

5.1 Simulation strategy

The test instances of the design problem are summarized

in Table 1. The three problem instances which are taken

from [23] involve fractional-order plants, and in some

cases, real systems can be better described by such

transfer functions. All the examples of design obey the

framework that is illustrated in Sect. 3. In the first place,

we change the different objective criteria and sample

sizes to study the influence of these two kinds of pre-

conditions on the controller performance. Furthermore,

we also run the other two state-of-the-art optimization

algorithms, namely self-adaptive differential evolution

(SaDE) algorithm [24] and comprehensive learning par-

ticle swarm optimization (CLPSO) algorithm [25], to

compare with continuous STA.

For continuous STA, we use the same parameter settings

as in previous [16], which are experimentally determined

by carrying out a series of additional experiments with

different parameters before conducting actual runs to

obtain the results. The detailed parameters of continuous

STA are given as follows: amax ¼ 1; amin ¼ 1e-4,

b ¼ 1; c ¼ 1; d ¼ 1, SE ¼ 20; fc ¼ 2, Maxiter ¼ 20.

Considering that the solution of (11) is a five-dimen-

sional space which is fKp;Ki;Kd; k; lg. From the practical

consideration of the PIkDl controller design, each param-

eter can be fixed within numerical ranges which are the

same as them in [23]:

0�Kp � 10

0�Ki � 10

0�Kd � 10

0� k� 2

0� l� 2

8
>>>>>>>><

>>>>>>>>:

In what follows, 20 independent runs were carried out

for each of the algorithms until the specified termination

criterion is met, and in this paper it means the 20 iterations

are met. Then we can observe the objective function value

and the closed-loop system’s step response.

5.2 Study of objective criterion

In Sect. 3, four different criteria are given. First we choose

the Problem I in Table 1 for simulation and then change the

Table 1 Description of the problem instances considered

Problem number Process plant transfer function Gp (s)

I 5s0:6 þ 2

s3:3 þ 3:1s2:6 þ 2:89s1:9 þ 2:5s1:4 þ 1:7s1:2

II 1

s3:5 þ 10s2:8 þ 35s2:1 þ 50s1:4 þ 24s0:7

III s1:2 þ 4s0:8 þ 7

8s3:2 þ 9s2:8 þ 9s2 þ 6s1:6 þ 5s0:4 þ 9
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different criteria. STA is applied to seek the optimal con-

troller parameters.

The simulation results are given in Table 2 and Figs. 2,

3, 4 and 5. Table 2 reports the minimum steady-state error

and controller parameters under different objective criteria.

Figures 2, 3, 4 and 5 show the system response perfor-

mance including the overshoot, rise time, peak time and the

minimum steady-state error (the concepts are detailed in

[26]). The graphs indicate that the ISE criterion can easily

give rise to oscillation and cause the longest settling time

for its performance index weights all errors equally inde-

pendent of time. Moreover, its minimum steady-state error

is 2:32E�3, which is the biggest among the values

obtained by all criteria. The ITSE criterion and IAE cri-

terion can obtain bad steady-state error, and they need long

settling time to stabilize the system. Besides, their other

system response performance like rise time and peak time

is bad. The ITAE criterion has excellent tracking perfor-

mance, strong robustness and antidisturbance capability.

Considering all kinds of factors, this paper decides to use

the ITAE criterion to carry out the next experiment.
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Fig. 2 Unit step response of closed-loop system for the Problem I

with ISE
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Fig. 3 Unit step response of closed-loop system for the Problem I

with ITSE

Table 2 Steady-state error and

controller parameters under

different objective criteria

Problem number Objective criterion Minimum error Controller transfer function Gc (s)

I PM

m¼1

½eðmÞ�2
5:104E�3 10þ 1:324

s0:01
þ 10s1:8011

PM

m¼1

m½eðmÞ�2
8:53E�4 9:5542þ 1:434

s0:5629
þ 10s1:4235

PM

m¼1

jeðmÞj
1:029E�3 4:0950þ 3:6974

s0:01
þ 5:5584s1:3698

PM

m¼1

tjeðmÞj
1:01E�4 10þ 10

s0:0617
þ 10s1:425
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Fig. 4 Unit step response of closed-loop system for the Problem I

with IAE
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5.3 Study of sample size

From (12) and (13) in Sect. 3, we have known the sample

size M should approach to 1 ideally. However, the sample

size cannot be taken to infinity in real industrial process. In

order to find a suitable sample size, simulation is carried

out under the different sample sizes as well as the same

process plant (Problem I in Table 1) and objective criterion

(ITAE).

The steady-state error is given in Table 3, and the unit

step response is shown in Figs. 6, 7 and 8 based on dif-

ferent sample sizes. It is shown that the larger the sample

size is, the smaller the steady-state error of the system step

response will be. However, if the sample size increases, the

parameters optimization time will increase. Besides, the

response overshoots under sample size 1000 and sample

size 5000 are 13.21 and 27.94 %, respectively, which are

larger than the response overshoot under sample size 2000.

Taking into account the practical efficiency and the

response performance, this paper uses the sample size

2000.Time(sec)
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Fig. 5 Unit step response of closed-loop system for the Problem I

with ITAE
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Fig. 6 Unit step response of system for the Problem I with sample

size 1000
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Fig. 7 Unit step response of system for the Problem I with sample

size 2000

Table 3 Steady-state error and controller parameters under different

sample sizes

Problem

number

Sample

size

Minimum

error

Controller transfer function

Gc (s)

I 1000 2:034E�3 1:1498þ 2:3940
s0:2593

þ 8:6595s0:9591

2000 3:16E�4 10þ 10
s0:01

þ 10s1:245

5000 9E�6 10þ 10
s0:8462

þ 7:5432s0:9686
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Fig. 8 Unit step response of system for the Problem I with sample

size 5000
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5.4 Comparison between STA and other algorithms

From the above observation, we find out the most suit-

able objective criterion and sample size. And then we

will test STA on three instances in Table 1. Furthermore,

the other two optimization algorithms are used for

comparison.

Table 4 shows the results of PIkDl controller parameters

and the objective function values for three test problems as

found with optimization algorithms. All entries in this

table are from the 20 independent runs of STA, SaDE,

CLPSO algorithm. It should be noted that STA can obtain

the best objective function value. And meanwhile the

standard deviation can prove the stability of STA outper-

forms the other two algorithms. Figures 9, 10 and 11 report

Table 4 Objective function values and controller parameters under different algorithms

Problem number Methods Best value Mean value SD Worst value Controller transfer function Gc (s)

I STA 0.1285 0.1285 0 0.1285 10þ 10
s0:01

þ 10s1:245

SaDE 0.1452 0.1567 0.021 0.1666 9:5542þ 8:9385
s0:0474

þ 5:5584s1:2446

CLPSO 0.1352 0.1387 0.017 0.1447 7:3583þ 6:8519
s0:2852

þ 6:0398s1:1973

II STA 4.6079 4.6465 0.0226 4.6459 10þ 7:2089
s0:3455

þ 10s0:4387

SaDE 5.0012 5.2664 0.2414 5.5767 8:3474þ 4:7820
s0:3294

þ 8:6702s0:6159

CLPSO 4.7834 5.1128 0.33 5.5655 8:2467þ 4:6740
s0:3475

þ 8:2459s0:7792

III STA 0.1948 0.2199 0.0224 0.2491 9:9453þ 6:1539
s1:3373

þ 5:434s1:1705

SaDE 0.2655 0.3114 0.0439 0.3769 9:445þ 9:1731
s1:3712

þ 5:4492s1:0898

CLPSO 0.2542 0.3507 0.0997 0.4716 7:6878þ 6:5004
s1:35

þ 5:466s1:1511
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Fig. 9 Unit step response of the closed-loop system for the Problem I
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Fig. 10 Unit step response of the closed-loop system for the Problem

II
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the dynamic response characteristics of the closed-loop

systems as described in Table 1. The response performance

involving overshoot, steady-state error, peak time and rise

time demonstrates the superiority of STA. Furthermore,

Figs. 12, 13 and 14 show the iterative curves of the

objective function values obtained by different methods for

the test problems, and it is obvious that STA could find

much better solutions.

6 Conclusion

By taking the derivative order as well as integral order into

consideration, designing FOPID controller will be more

difficult than that of IOPID controller. The FOPID con-

troller design problem can be converted into a parameter

optimization problem, and it is found that the objective

criterion and the sample size will affect the controller

performance. In order to find the optimal FOPID controller

parameters, we find the most suitable objective criterion

and sample size by experiment at first. Then an intelligent

optimization method, named state transition algorithm, is

used to select these five optimal controller parameters.

From the simulation results, it can be observed that the

STA can be considered as an effective alternative method

for FOPID controllers design.

Acknowledgments Authors thank the National Natural Science

Foundation of China (Grant Nos. 61503416, 61533020, 61533021,

61590921) and Key Exploration Project (Grant No. 7131253) for the

funding support.

Compliance with ethical standards

Conflict of interest We declare that there is no conflict of interest.

References

1. Rai P, Shekher V, Prakash O (2012) Determination of stabilizing

parameter of fractional order PID controller using genetic algo-

rithm. Int J Comput Eng Manag 15:24

Iteration
0 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
STA
SaDE
CLPSO

Fig. 12 Iterative curves of the objective function values obtained by

different methods for Problem I

Iteration

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

4

5

6

7

8

9

10

11
STA
SaDE
CLPSO

0 2 4 6 8 10 12 14 16 18 20

Fig. 13 Iterative curves of the objective function values obtained by

different methods for Problem II

Iteration
0 2 4 6 8 10 12 14 16 18 20

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
STA
SaDE
CLPSO

Fig. 14 Iterative curves of the objective function values obtained by

different methods for Problem III

Neural Comput & Applic

123



2. Sabatier J, Agrawal O, Machado J (2007) Advances in fractional

calculus. Springer, Netherlands

3. Dadras S, Momeni H (2012) Fractional terminal sliding mode

control design for a class of dynamical systems with uncertainty.

Commun Nonlinear Sci Numer Simul 17(1):367–377

4. Krishna B (2011) Studies on fractional order differentiators and

integrators: a survey. Sig Process 91(3):386–426

5. Podlubny I (1999) Fractional-order systems and PID controllers.

IEEE Trans Autom Control 44(1):208–214

6. Das S, Pan I, Das S, Gupta A (2012) A novel fractional order fuzzy

PID controller and its optimal time domain tuning based on integral

performance indices. Eng Appl Artif Intell 25(2):430–442

7. Koksal E (2013) Fractional-order and active disturbance rejection

control of nonlinear two-mass drive system. IEEE Trans Ind

Electron 60(2):3806–3813

8. Wang D, Gao X (2012) H 1 design with fractional-order PD

controllers. Automatica 48(5):974–977
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